Structure-Preserving Low Multilinear Rank Approximation of Antisymmetric Tensors

نویسندگان

  • Erna Begovic Kovac
  • Daniel Kressner
چکیده

This paper is concerned with low multilinear rank approximations to antisymmetric tensors, that is, multivariate arrays for which the entries change sign when permuting pairs of indices. We show which ranks can be attained by an antisymmetric tensor and discuss the adaption of existing approximation algorithms to preserve antisymmetry, most notably a Jacobi algorithm. Particular attention is paid to the important special case when choosing the rank equal to the order of the tensor. It is shown that this case can be addressed with an unstructured rank-1 approximation. This allows for the straightforward application of the higher-order power method, for which we discuss effective initialization strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Low Multilinear Rank Approximation by Structured Matrix Low-Rank Approximation

We present a new connection between higherorder tensors and affinely structured matrices, in the context of low-rank approximation. In particular, we show that the tensor low multilinear rank approximation problem can be reformulated as a structured matrix low-rank approximation, the latter being an extensively studied and well understood problem. We first consider symmetric tensors. Although t...

متن کامل

Jacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors

The problem discussed in this paper is the symmetric best low multilinear rank approximation of third-order symmetric tensors. We propose an algorithm based on Jacobi rotations, for which symmetry is preserved at each iteration. Two numerical examples are provided indicating the need of such algorithms. An important part of the paper consists of proving that our algorithm converges to stationar...

متن کامل

Multilinear Low-Rank Tensors on Graphs & Applications

We propose a new framework for the analysis of lowrank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank SVD for matrices and multilinear SVD for tensors. Then, building on this novel decomposition we construct a general class of convex optimization...

متن کامل

Krylov-type methods for tensor computations I

Several Krylov-type procedures are introduced that generalize matrix Krylov methods for tensor computations. They are denoted minimal Krylov recursion, maximal Krylov recursion, and contracted tensor product Krylov recursion. It is proved that, for a given tensor A with multilinear rank-(p, q, r), the minimal Krylov recursion extracts the correct subspaces associated to the tensor in p+ q+r num...

متن کامل

Local minima of the best low multilinear rank approximation of tensors

Higher-order tensors are generalizations of vectors and matrices to thirdor even higher-order arrays of numbers. We consider a generalization of column and row rank of a matrix to tensors, called multilinear rank. Given a higher-order tensor, we are looking for another tensor, as close as possible to the original one and with multilinear rank bounded by prespecified numbers. In this paper, we g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2017